Learning Optimized Local Difference Binaries for Scalable Augmented Reality on Mobile Devices

Xin Yang, Member, IEEE. Kwang-Ting (Tim) Cheng, Fellow, IEEE

Abstract—The efficiency, robustness and distinctiveness of a feature descriptor are critical to the user experience and scalability of a mobile Augmented Reality (AR) system. However, existing descriptors are either too computationally expensive to achieve real-time performance on a mobile device such as a smartphone or tablet, or not sufficiently robust and distinctive to identify correct matches from a large database. As a result, current mobile AR systems still only have limited capabilities, which greatly restrict their deployment in practice. In this paper, we propose a highly efficient, robust and distinctive binary descriptor, called Learning-based Local Difference Binary (LLDB). LLDB directly computes a binary string for an image patch using simple intensity and gradient difference tests on pairwise grid cells within the patch. To select an optimized set of grid cell pairs, we densely sample grid cells from an image patch and then leverage a modified AdaBoost algorithm to automatically extract a small set of critical ones with the goal of maximizing the Hamming distance between mismatches while minimizing it between matches. Experimental results demonstrate that LLDB is extremely fast to compute and to match against a large database due to its high robustness and distinctiveness. Compared to the state-of-the-art binary descriptors, primarily designed for speed, LLDB has similar efficiency for descriptor construction, while achieving a greater accuracy and faster matching speed when matching over a large database with 2.3M descriptors on mobile devices.

Index Terms—Scalable augmented reality, binary descriptor, AdaBoost learning, mobile devices

1 INTRODUCTION

A scalable Mobile Augmented Reality (MAR) system that is able to track objects, recognized from a large database, can facilitate a wide range of applications, such as augmenting an entire book with digital interactions or linking city-wide movie posters or leaflets with multimedia trailers and advisements.

Several MAR systems [21, 22, 23, 24, 25, 26] have been proposed recently, such as Wagner et al.’s pose tracking [21, 22, 23], Klein and Murray’s parallel tracking and mapping [13] and Ta et al.’s SURFTrac [25]. Despite of their success in real-time tracking, the scalability of these MAR systems remains limited. In practice, they can only manage a limited number of objects, which greatly restricts their large-scale deployment.

One of the major bottlenecks of today’s MAR systems is the high complexity of computing, matching and storing feature point descriptors used for recognition and tracking. Most existing MAR systems rely on high-dimensional real-valued descriptors, e.g. SIFT [2] and SURF [1], which are too costly for mobile devices with limited computational and memory resources. As a result, most systems can only afford a small dataset for recognition and tracking.

Lightweight binary descriptors are very efficient to compute, to store and to match by computing the Hamming distance between descriptors (i.e. via XOR and bit count operations), attractive options for MAR. Binary Robust Independent Element Feature (BRIEF) [3], the Oriented Fast and Rotated BRIEF (ORB) [4], and Fast Retina Keypoint (FREAK) [6] are examples of such binary features. The common idea behind these features is to directly generate a binary string by comparing intensities between pairs of pixels with in an image patch.

While efficient, existing binary descriptors utilize only average intensities. In addition, they sparsely sample a very small number of pixels and rely on ad hoc schemes to select pixel pairs, cursorily discarding a large portion of available information. These designs greatly limit the distinctiveness of existing binary descriptors. For example, they might fail to distinguish patches of different gradient changes (see Figures 1 (a)-(b)) or with sparse textures (see Figures 1 (c)-(d)). Lack of distinctiveness leads to many false matches when matching against a large database. The existence of false matches demands expensive post-verification methods (e.g. RANDom Sample Consensus (RANSAC) [33] or PROgressive Sample Consensus (PROSAC) [32]) for validating matching consensus and more false matches will incur longer runtime for this expensive process. Therefore, using a binary descriptor without sufficient distinctiveness could actually increase the overall runtime and limit the scalability of an MAR system.

In this paper we present a new binary descriptor, called Learning-based Local Difference Binary (LLDB), based on our previous work Local Difference Binary (LDB) [7]. Compared to LDB and other existing binary descriptors,
LLDB is more distinctive and robust, thus it can effectively identify correct matches from a large database with fewer verifications, yielding high efficiency in matching. The distinctiveness and robustness of LLDB are achieved through 3 steps. First, LLDB captures the internal patterns of each image patch through a set of binary tests, each of which compares the average intensities and first-order gradients of a pair of image grid cells within the patch. The average intensity and gradients capture both DC and AC components of a patch, thus they provide a more distinctive basis for binary description. Second, in comparison with existing binary descriptors, LLDB applies a much denser sampling pattern on an image patch, which offers a much richer source of distinctive features. Third, instead of relying on ad hoc schemes used in existing binary descriptors, LLDB uses a modified AdaBoost algorithm for selection of critical pairs of grid cells. The modified AdaBoost targets the fundamental goal of ideal binary descriptors: minimizing distances between matches while maximizing them between mismatches. Computing LLDB descriptors is extremely fast. Utilizing integral images, the average intensity and first-order gradients of each grid cell can be calculated using only 4–8 add/subtract operations and a multiply operation with the reciprocal of the size of the grid cell.

Our experimental results show that the discriminative ability and robustness of LLDB outperform the state-of-the-art binary descriptors LDB, ORB, BRISK and FREAK, while their computational efficiency is about the same. The performance of LLDB is demonstrated via a recognition task with 228 objects and patch tracking on a Motorola Xoom1 tablet. Results show that LLDB is much faster to match and track than its competitors, while achieving a greater accuracy.

The rest of the paper is organized as follows: Sec. 2 reviews the related work. Sec. 3 presents details of the proposed descriptor. In Sec. 4, we evaluate the performance of LLDB for scalable matching and pairwise image matching. Sec. 5 provides experimental results on mobile devices for speed, robustness and discriminative power evaluation. Sec. 6 concludes the paper.

2 RELATED WORK

In this section, we review state-of-the-art MAR systems based on visual features, lightweight binary descriptors and learning image descriptors.

2.1 Visual-Feature-Based MAR Systems

With the proliferation of mobile devices equipped with low-cost high-quality cameras, there have been several emerging MAR systems based on visual recognition and tracking [21, 22, 23, 24, 25, 26]. In such a system, an image frame, captured by a mobile camera, is first described using a set of local feature descriptors, based on which objects in the frame are recognized. Periodic recognition results are bridged by tracking the recognized contents.

Most recent research efforts focused on improving the tracking speed for MAR. Wagner et al. made significant advancement in pose tracking [21, 22, 23] to meet tight real-time constraints. Klein and Murray [24] implemented parallel tracking and mapping on a mobile phone. Ta et al. [25] improved the speed by tracking SURF features in constrained locations. However, none of these efforts addressed the scalability of MAR. High-dimensional and real-valued descriptors are used, which are expensive to match and store. As a result, these systems can only handle a limited number of objects.

There are also several works to facilitate real-time recognition over a larger database for AR. For instance, Taylor [28] proposed a high-speed recognition system supporting typical video frame rates. Lepetit et al. [29] recasted matching as a classification problem using randomized trees and traded increased memory usage for faster descriptor matching. Takacs et al. [26] exploited the temporal coherency between frames and developed a unified real-time tracking and recognition system. Pilet et al. [30] presented an approach based on learning for retrieval and tracking which can handle hundreds of pictures. However, the scalability of their systems were only evaluated on desktop computers and not yet optimized for real-time requirements on handheld devices. Moreover, these systems may require a high memory usage and database redundancy. Therefore, for such systems, supporting a larger database with hundreds of images on a handheld device is very challenging.

Due to the limited computing and memory resources in a mobile device, MAR’s scalability must be addressed – for better user experience and for enabling a wider spectrum of applications. Different from previous works, we focus on improving the scalability of MAR under the efficiency constraint. More specifically, we design a new binary descriptor which is very fast to compute, compact to store and efficient to match against a large dataset due to its distinctiveness and robustness.

2.2 Lightweight Binary Descriptors

The increasing demand of handling a larger database on mobile devices stimulates the development of light-weight binary descriptors that are efficient to construct, to match and to store. Notable is the BRIEF descriptor [3] which directly generates bit strings by simple binary tests comparing pixel intensities in a smoothed image patch. The pixel positions are selected randomly according to a Gaussian distribution. A set of efforts are made to further enhance the performance of BRIEF descriptors. Rublee et al. proposed ORB [4] which incorporates image pyramids...
and orientation operators into BRIEF to achieve scale and rotation invariance. In addition, rather than randomly select pixel pairs, an ad hoc selection scheme is proposed for selecting highly-variant and uncorrelated pixel pairs. Leutenegger et al. [5] suggested sampling pixels according to a circular sampling strategy and then selects short-distant pairs. The resulting descriptor is called BRISK. Alahi et al. [6] further enhanced BRISK by leveraging a sampling strategy which resembles the retinal ganglion cells distribution. However, as described in Sec. 1, these descriptors utilize only intensities of pixels, sparsely sampled from an image patch. In addition, their pixel pair selection rules are still ad hoc, thus cannot guarantee a satisfactory descriptor to support a wide range of application tasks. As a result, they are not distinctive and robust enough to effectively localized matched patches in large databases. Post-processing for removing false matches is usually required to ensure sufficient recognition accuracy, increasing the total time cost for MAR. In our previous work [7], we proposed LDB which compares pairs of grid cells within a patch, instead of pairs of pixels, to form binary descriptors. Each grid cell is represented by gradients in addition to intensity summations. However, while more distinctive, LDB still lacks a systematic approach for selecting the best set of grid cells. In addition, non-overlapping gridding, employed in their method, inevitably incurs spatial quantization errors.

2.3 Learning Image Descriptors

A number of methods are available for learning an optimized design. Winder et al. [9] broke up the entire descriptor extraction process into a number of building blocks. For each block they tested multiple algorithms and optimized parameters of each algorithm using Powell’s multidimensional direction set method. Different algorithm combinations are evaluated using an image matching task. The one achieves the best performance is used as the final design. In [10], Winder et al. further extended this work by focusing exclusively on the DAISY spatial configuration and extensively testing its combination with several most promising algorithms. In [11], Babenko et al. formulated local feature matching as a classification problem and applied boosting to learn a set of features for specific tasks. In contrast to these approaches which aim at finding optimal design and related parameters for SIFT-like features, we focus on binary descriptors and our goal is to select a small and optimized set of grid cell feature pairs. Our approach is similar to the Boosted Similarity Sensitive Coding (BoostSSC) [38] which relies on AdaBoost to learn a feature description from a family of weak classifiers. BoostSSC method was further extended in [39] to form a more compact description. To better adapt the method to the problem of learning a description for intensity patches, the approach in [39] also replaced BoostSSC’s weak classifiers by gradient energy-based weak classifiers [40]. However, calculating the gradient energy of an image patch requires expensive operations for computing the dot product between a set of quantized orientations and the gradient orientation at every pixel in the patch. Such a requirement would be too costly for real-time applications on a mobile handheld device. In contrast, we form our weak classifiers based on local difference patterns which are ultra-fast to compute and distinctive as well. In addition, matching based on descriptors learned in [38] and [39] would require computing a weighted hamming distances between descriptors. Hence it’s slow to match against a large database. In our approach, we modified the conventional AdaBoost to learn a binary description so that the (unweighted) hamming distance can be used for efficient matching.

3 LLDB: Learning Based Local Difference Binary

Our feature learning framework (as shown in Figure 2 (a)) is partially motivated by the Viola and Jones face detection system [12], which samples a large amount of Harr-like features within an image window and then leverages AdaBoost learning to select a small set of critical Harr-like features to form a unique description of the image window. In particular, our learning framework contains three processing stages: 1) dense sampling grid cells from an image patch according to a predetermined sampling strategy, 2) extracting features from each grid cell (i.e. grid cell features), and 3) selecting pairs of grid cell features based on a modified AdaBoost learning using training data which consist of ground-truth matching and non-matching patches. The learning process is performed offline. Once it completes, M pairs of grid cell features are selected. We perform binary tests t on the selected pairs (see Equation (1)) and then concatenate the results of binary tests together to form an M-dimensional binary descriptor (Figure 2 (b)). In Equation (1) F_i is the feature extracted from grid cell i.

$$
\tau(F_i, F_j) := \begin{cases}
1 & \text{if } F_i - F_j > 0 \\
0 & \text{otherwise}
\end{cases}
$$

In particular, in this paper we define F_i for our LLDB as $F_i \in \{I_{ax}(i), d_x(i), d_y(i)\}$, where

$$
I_{ax}(i) := \frac{1}{m} \sum_{k=1}^{m} \text{Intensity}(k) \\
d_x(i) := \text{Gradient}_x(i) \\
d_y(i) := \text{Gradient}_y(i)
$$

and m_i is the total number of pixels in grid cell i. $\text{Gradient}_x(i)$ and $\text{Gradient}_y(i)$ are the regional gradients of grid cell i in the x and y directions, respectively (more details will be
presented in Sec. 3.2). In the subsequent sections, we describe each processing stage in detail.

3.1 Dense Gridding Cell Sampling

The sampling strategy (i.e. the distribution of locations and sizes of the sampled grid cells) largely influence the robustness and distinctiveness of the LLDB descriptor. A region with a greater grid cell density and a smaller grid cells encodes more detailed information, thus is more distinctive. On the other hand, a region with a lower density and larger grid cells captures coarser information, and thus is less sensitive to noises.

Several sampling strategies have been explored in existing binary descriptor algorithms [3, 4, 5, 6, 7]. However, these algorithms leverage a low sampling rate. As a result, valuable information is often excluded from the rest of the design pipeline. In contrast, we attempt to retain as much useful information as possible at this stage by densely sampling grid cells according to one of several sampling strategies (which will be discussed in detail later). In our experiment, for each sampling strategy we densely sample 169 grid cells from an image patch which yields 14,196 pairs of pixels, that is 7X more than BRISK, 14.7X more than FREAK, 29X more than LDB, and 54.5X more than BRIEF and ORB. An effective learning algorithm is then employed in a successive stage to select a small subset and exclude a vast majority of these pairs to achieve high fidelity.

In this paper, we experimented with six promising strategies which combine three location distributions with either fixed or varying grid cell sizes (see Figure 3). The three distributions we investigated include the uniform distribution, the circular distribution used in BRISK [5], and the retinal distribution used in FREAK [6]. For each distribution, we either set a fixed size (Figure 3(a)-(c)), 8×8, for all selected grid cells or use a varying size - a larger size for an outer region and a smaller size for an inner region. For example, for the uniform distribution (Figure 3(d)), we use 8×8 as the size of the grid cells for those residing in the inner square within ½ width and height of the patch, and a factor of 12×12 for the remaining. For the circular and retinal distributions (Figure 3(e) and (f)), we employ the same scheme used in BRISK and FREAK respectively for deciding the size of grid cells (i.e. the size of a grid cell is proportional to the distance between the grid cell and patch center).

3.2 Grid Cell Features

This section describes the grid cell features used in our framework and how to compute them efficiently.

3.2.1 Grid Cell Features

The information extracted from each grid cell determines both the distinctiveness and efficiency of a descriptor. The most basic yet fast-to-compute information is the average intensity, which represents the DC component of a grid and can be computed extremely fast via the integral image technique. However, the average intensity is too simple to describe the intensity changes inside a grid cell. For example, Figure 4 (a) displays three pairs of grid cells within three distinct patches. Consider the up-left grid cells of the three patches (denoted by red rectangles); although they have very different pixel intensity values and distributions, the average intensities are exactly the same (Figure 4(b)). A binary tests τ between pairs of grid cells yields identical results for these three distinct patches.

To improve its distinctiveness, we introduce the regional first-order gradients \(d_x \) and \(d_y \) in addition to using the average intensities \(\bar{I}_{\text{avg}} \). More specifically, regional first-order gradient (as shown in Figure 5 (b) - \(d_x \) and \(d_y \) is the difference between the sums of the pixel intensities within in two rectangular regions. The two rectangular regions are of the same size and shape and are either horizontally or vertically adjacent. It’s known that gradients are more resilient to photometric changes than average intensities and can also capture intensity changes inside a grid such as the magnitude and direction of an edge. Considering the patches in Figure 4, the regional first-order gradients \(d_x \) and \(d_y \) are able to distinguish them (Figure 4(b)).

We define the feature representation for each grid cell (i.e. grid cell features) as \(F \in [\bar{I}_{\text{avg}}, d_x, d_y] \). Recall that there are 14,196 pairs of grid cell associated with each image patch. Pairing each type of grid cell feature \(F_i \in [\bar{I}_{\text{avg}}(i), d_x(i), d_y(i)] \) with the same type of grid cell feature \(F_j = \{ \bar{I}_{\text{avg}}(j), d_x(j), d_y(j) \} \) of all other grid cells \(j \neq i \) yields 42,588 pairs of features. This provides a rich source of distinctive

Figure 3: Illustration of sampling strategies (i.e. the distribution of locations and sizes of the sampled grid cells). For a better visualization, we use the circle inscribed in a grid cell to illustrate its size.

Figure 4: Illustration of performing binary tests on the pair of diagonal grids for three image patches. (a) Three image patches with different pixel intensity values and distributions. (b) The average intensity value \(I \) and gradient in \(x \) and \(y \) directions, \(d_x \) and \(d_y \), for each pair of diagonal grids (red and green). For each of these three cases, red and green grids have the same \(I \), while different \(d_x \) and \(d_y \). Therefore, individual grids can still be distinguished from each other. (c) 3-bit binary test results for the three patches.
basis for learning optimized local different binaries.

3.2.2. Computing Grid Cell Feature Efficiently

Computing an upright grid cell feature is extremely fast using an integral image. As shown in [12], the value of an integral image at location \((x, y)\) is calculated by summing up intensities above and to the left of \((x, y)\). Accordingly, each element of a grid cell feature can be computed using 4–8 add/sub operations and a divide operation based on the integral image.

However, in order to achieve rotation invariance, image patches are often rotated to their respective dominant orientations. In this case, the integral image of an entire image cannot be directly used because the patch axis is not parallel to the integral image axis. To address this problem, we compute a rotated integral image for each rotated patch, as shown in Figure 5(a). The rotated integral image of a patch is calculated by summing up pixels along the dominant orientation (i.e. the \(X'\) axis), instead of the \(X\) axis. Based on the rotated integral image of the patch, we can efficiently compute the grid cell features of any size within the patch (Figure 5(b)).

The additional computation cost for calculating a set of rotated integral images of patches depends on the number of patches but in general it is in a similar range of the cost of computing an upright integral image of the entire image. For example, computing an integral image of a 1280x800 image involves 1280x800=1M operations. In comparison, computing rotated integral image for 500 patches also involves ~1M operations (i.e. 500 patches each of which has a patch size of 45x45). We experimentally validated this claim by comparing the runtimes of computing 500 upright LLDB descriptors and rotated LLDB descriptors for a 1280x800 image on a ThinkPad T420 laptop. As shown in the 2nd column of Table 1, computing upright LLDB descriptors takes 26.7ms. Computing rotated LLDB descriptors where the coordinates \((X', Y')\) of the rotated patches are generated based on nearest neighbor interpolation on-the-fly takes 32.4ms (3rd column). Intuitively, the runtime of computing rotated LLDB should be reduced by quantizing the orientations and pre-storing the rotated coordinates \((X', Y')\) in a lookup table. However, a fine orientation quantization usually leads to a large lookup table, and in turn, results in longer runtime due to slow memory access. As shown in the 4th column of Table 1, computing 500 rotated LLDB based on a lookup table with 36 orientation quantization bins takes 42.8ms.

Table 1: Time cost for computing 500 128-bit LLDB descriptors on a ThinkPad T420 laptop.

<table>
<thead>
<tr>
<th>Upright LLDB</th>
<th>Rotated LLDB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Runtime</td>
<td>26.7ms</td>
</tr>
</tbody>
</table>

Figure 5: Efficiently computing grid cell features within a rotated patch. (a) A rotated patch in an upright image. The rotated integral image of the patch is computed by summing up pixels along axis \(X'\) instead of \(X\). (b) Computing each element of a grid cell feature within the rotated patch in 4–8 memory accesses.

3.3 Learning Pairs of Grid Cell Features

An ideal set of pairs of grid cell features should provide a binary description which can maximize the distance between mismatches while minimize it between matches. While many feature selection procedures have been proposed [17, 18, 19, 20], we need a very aggressive proce-

dure to discard the vast majority of candidates. The AdaBoost [37] learning, which was popularized by the Viola and Jones’s face detection system [12], has successfully demonstrated its effectiveness for selecting a small set of critical features from a large candidate pool which can best separate face and non-face images. Drawing inspirations from its success for separating faces from non-faces, we apply it for selecting pairs of grid cell features to differentiate matches from mismatches. We made some modifications to the conventional AdaBoost so that it can better achieve our goal of optimizing local difference binaries. In the following, we first review how to apply the original AdaBoost for learning descriptors, and then describe our modifications.

3.3.1 AdaBoost for Learning Descriptors

The training data is denoted as \(\{(x_n, y_n) | 1 \leq n \leq N\}\), where \(x_n\) is a pair of image patches \((p_{a_n}, p_{b_n})\) and \(y_n \in \{-1, 1\}\) is a label indicating whether the patch pair is a match (+1) or a mismatch (-1). Our goal is to learn an M-bit binary description \([\tau(F_{i_1}, F_{j_1}), \tau(F_{i_2}, F_{j_2}), ..., \tau(F_{i_M}, F_{j_M})]\) which can best separate matches from mismatches. Here \(\tau(F_{i_m}, F_{j_m})\) (1 ≤ \(m\) ≤ \(M\)), as defined in Equation (1), is a binary test performed on a pair of grid cell features \((F_{i_m}, F_{j_m})\).

To achieve this goal, we apply AdaBoost to iteratively select \(M\) weak classifiers \([h_m(x) | 1 \leq m \leq M]\). We consider a weak classifier having the following form:

\[
h_m(x) = h_m(p_{a_n}, p_{b_n}) = \begin{cases} 1 & \tau(F_{i_m}(p_{a_n}), F_{j_m}(p_{b_n})) = \tau(F_{i_m}(p_{a_n}), F_{j_m}(p_{b_n})) \\ -1 & \tau(F_{i_m}(p_{a_n}), F_{j_m}(p_{b_n})) \neq \tau(F_{i_m}(p_{a_n}), F_{j_m}(p_{b_n})) \end{cases} \tag{3}
\]

As each weak classifier depends on a unique pair of grid cell features, the process of selecting weak classifiers is equivalent to selecting pairs of grid cell features. Once \(M\) weak classifiers are selected, according to AdaBoost, a pair of patches \((p_{a_n}, p_{b_n})\) can be classified based on their distance \(D(p_{a_n}, p_{b_n})\):

\[
D(p_{a_n}, p_{b_n}) = \sum_{m=1}^{M} \alpha_m h_m(p_{a_n}, p_{b_n}) \tag{4}
\]

where \(\alpha_m\) is a weight reflecting the impact of the \(m\)-th weak classifier. As \(D(p_{a_n}, p_{b_n})\) is proportional to the weighted Hamming distance \(D_h(p_{a_n}, p_{b_n})\):

\[
D_h(p_{a_n}, p_{b_n}) = \sum_{m=1}^{M} \alpha_m |\tau(F_{i_m}(p_{a_n}), F_{j_m}(p_{b_n})) - \tau(F_{i_m}(p_{a_n}), F_{j_m}(p_{b_n}))| \tag{5}
\]

which can be efficiently computed via the “XOR” opera-
tions. In practice, we use \(D_b(p_a, p_b) \) for better efficiency.

The key of AdaBoost is the selection of weak classifiers, which is determined in the process of optimizing an objective function. A common objective function used in the conventional AdaBoost procedure is an exponential loss function \(L \) over the training data:

\[
L = \sum_{n=1}^{N} e^{-\frac{1}{2} \epsilon_n \sum_{m=1}^{M} a_m h_m(x_n)}
\]

(6)

To optimize \(L \) in Equation (6), in each round of selection AdaBoost selects one pair of grid cell features to form a weak classifier which minimizes the sum of weighted misclassification error \(\epsilon_m = \sum_{n=1}^{N} w_n^{(m)} I(h_m(x_n) \neq y_n) \). Here \(w_n^{(m)} \) is the weight of the \(n \)-th training sample in iteration \(m \) and is updated iteratively in each round according to Equation (7) to place greater emphasis on those samples incorrectly classified by the previously selected features.

\[
w_n^{(m)} \propto w_n^{(m-1)} e^{-\frac{1}{2} \epsilon_n \sum_{m=1}^{M} a_m h_m(x_n)}
\]

(7)

This scheme implicitly reduces correlations among selected features as the feature selected in each round tends to classify the training samples in a different way from the ones selected in the previous rounds. A weight \(a_m \) is calculated according to Equation (8) to indicate the impact of the \(m \)-th selected feature on the final classification result.

\[
a_m = \ln \left(\frac{1 - \epsilon_m}{\epsilon_m} \right)
\]

(8)

There are three limitations for directly applying the conventional AdaBoost procedure to select local difference binary descriptors:

1. It’s highly desirable to use Hamming distance as the distance metric so that two local difference binary descriptors can be compared with ultra-high efficiency via the XOR and bit count operations. However, the conventional AdaBoost associates a weight \(a_m \) with each bit of a descriptor, which makes the distance significantly more complex. Directly ignoring the weights (i.e., setting \(a_m = 1 \) for all \(m=1, \ldots, M \)) is a simple solution. However, this simple solution inevitably degrades the matching accuracy. To reduce the performance degradation, it’s desirable to have small differences among the weights so that quantizing all of them to 1 for fast distance estimation between descriptors would not degrade the matching accuracy too much. Unfortunately, the conventional AdaBoost automatically generates \(a_m \) according to the classification error \(\epsilon_m \) in each iteration, without providing us a knob to control its value.

2. To optimize both LDB’s footprint and performance, it’s desirable to have a proper decreasing rate of the objective function for each new iteration. On one hand, a fast decreasing rate can achieve a low classification error with a smaller number of features, i.e., a small footprint. On the other hand, an excessively fast decreasing rate may lead to a rapid overfit to the training data, adversely limiting the descriptor’s performance (i.e. the objective function stops decreasing at a point where the training error is still large). However, the conventional AdaBoost does not offer a systematical way to control the decreasing rate of the objective function.

3. The appearance diversity of matching patches is usually larger than that of faces. As a result, the conventional AdaBoost would demand much more training data with greater diversity to learn a sufficiently distinctive descriptor. However, this would make the training time impractically long. We observed in our experiment that given 42,588 candidate features and 12,000 training data (~83% being mismatches), a similar amount of candidate features and training data used in Viola and John’s face detection system [12], the conventional AdaBoost can only learn a very short descriptor (around 48 bits) and the objective function stops decreasing at that point while the training error is still high. Increasing the training data size to 120,000 increases the training time by 10X, while the training error is only slightly reduced.

To address the above limitations, we made some modifications to the conventional AdaBoost, which are described in the following subsection.

3.3.2 Modifications

We introduce a variable \(\beta \) and rewrite the objective function as:

\[
L = \sum_{n=1}^{N} e^{-\frac{1}{2} \epsilon_n \sum_{m=1}^{M} a_m h_m(x_n)}
\]

(9)

Accordingly, \(a_m \) and \(w_n^{(m)} \) are computed as:

\[
a_m = \frac{1}{\beta} \ln \left(\frac{1 - \epsilon_m}{\epsilon_m} \right)
\]

(10)

\[
w_n^{(m)} \propto w_n^{(m-1)} e^{-\frac{1}{2} \epsilon_n \sum_{m=1}^{M} a_m h_m(x_n)}
\]

(11)

Details of the derivation of \(a_m \) and \(w_n^{(m)} \) are given in the Appendix.

The variable \(\beta \) acts as a tuning knob to adjust the difference among weights \(a \) and the decreasing rate of the objective function. We experimentally test \(K \) different values of \(\beta \). For each value, we examine 1) the difference among weights, measured by the ratio of the maximum and minimum weights, and 2) the decreasing rate which is visualized by plotting the objective function (i.e. exponential loss function \(L \)) as a function of number of selected features. Figure 6 shows the results when selecting up to 128 features from 42,588 features generated based on a uniform sampling strategy with grid cells of varying sizes (see Figure 3(d)). For other sampling strategies, the trend is the same, thus their results are omitted here. The training data consists of 2,000 pairs of matching patches and 10,000 pairs of non-matching patches, randomly chosen from the Liberty dataset [10]. More details about the training data will be provided in Section 4.

Figure 6 (a) shows the ratio between the maximum and minimum weights (i.e. \(a_{11}/a_{128} \)) for 10 different values of \(\beta \). The results show that as \(\beta \) increases from 0.1 to 1.0, \(a_{11}/a_{128} \) decreases from \(~2\times10^3\) to \(~3\). This indicates that to have smaller differences among weights for reducing perfor-
mance degradation, a large β is preferred. Figures 6 (b) and (c) show the exponential loss function L for 10 different values of β. When β is between 0.1 and 0.5 (Figure 6 (b)) a larger β makes the loss function L decrease faster. Therefore, within this range a larger β is preferred since fewer features are needed to achieve the same training error. When β is between 0.5 and 1.0 (Figure 6 (c)), a smaller β makes the loss function saturates later and gives a smaller training error at the saturation point. Therefore, within the range between 0.5 and 1.0, a smaller β is preferred. To summarize the results in Figures 6 (a)-(c), adjusting the value of β we can limit the differences among weights so that quantizing all of them to 1 for fast distance estimation between descriptors would not degrade the matching accuracy too much. Furthermore, the value of β can be tuned to explore the tradeoff between the descriptor’s footprint and performance to meet the requirements of various applications.

We also provide a simple solution to maintain a reasonable training complexity and meanwhile learn a sufficiently distinctive descriptor: instead of learning a full descriptor using a huge amount of training data, we learn several sub-descriptors using smaller training sets and concatenate them together to form a distinctive one. More specifically, we prepare several training sets and based on each training set we learn a sub-descriptor. The learning process of each sub-descriptor stops once the objective function saturates. This idea is motivated by [12], which leverages a cascade of classifiers and learns classifiers of each stage based on a small amount of training data. In a practical implementation, we utilize the minimum classification error to determine whether the objective function saturates or not. Once the minimum classification error is over 0.5 (i.e. the selected weak classifier is not better than a random guess), the process switches to a new training set.

Pseudo-code 1 details our procedure for selecting pairs of grid cell features.

4 EXPERIMENTS
In this section, we provide experimental details for learning optimized local different binaries. Then we compare the performance of LLDB with the state-of-the-art binary descriptors for scalable matching and pairwise image matching.

4.1 Learning Local Different Binaries
We first describe the training data, testing data, experimental setup and measurement. Then we evaluate the performance of different sampling strategies, grid cell features and pair selection schemes.

4.1.1 Training Data and Testing Data
We use the Liberty data set [10] as a source of training data for the AdaBoost learning. The Liberty dataset contains 450,092 patches, sampled densely from multiple images of the 3D scene of Statue of Liberty. The dataset also includes ground truth data indicating the match and mismatch information. The major transformations in the Liberty dataset include scaling, illumination changes and...
viewpoint changes. These transformations commonly exist in MAR applications, thus training descriptors using this dataset can help optimize the performance for practical application scenarios.

We test the performance of our LLDB using 228 pairs of Document-Natural images. Each pair is generated by manually capturing two images of an original image from the Document-Natural dataset [36] (Figure 7 - up) with up to ±45° orientation changes and 0.8x-2.0x scaling changes (Figure 7 - down).

4.1.2 Experimental Setup and Measurement

In the training phase, we randomly chose 2,000 pairs of matching patches as positive data and 10,000 pairs of non-matching patches as negative data. More negatives are selected since in practice there are significantly more mismatches than matches for most matching tasks. For each sampling strategy (Figure 3), we learn the best M pairs of grid cell features out of 42,588 available pairs. In this experiment, we set M = 32, yielding 32-bit binary descriptors. For descriptors of other lengths (64, 128 and 256), we provide detailed evaluation in Sec. 5.2. We set β to 0.5 for all the following experiments as it gives a relatively small differences among weights (as shown in Figure 6 (a)) and meanwhile provides a fast decreasing rate of the objective function and a minimum training error (as shown in Figures 6 (b) and (c)).

For each testing image, we detect 1,000 points using an oFAST [4] detector (scales = 4 and scale factor = 1.2). For each point in an image, we perform brute-force matching based on the Hamming distance to find its nearest neighbor (NN) on its paired image. Then we verify the matching points using RANSAC, and remove the outliers as false matches. Denoting the total number of matching points as N and the number of correct matches as n_c, we evaluate the performance of descriptors using the ratio of correct matches n_c/N.

4.1.3 Results

Table 2 shows the ratio of correct matches obtained by LLDB for different combinations of sampling strategies and grid cell features. First, we compare the performance of three different location distributions. With keeping all other settings kept the same, the Uniform distribution shows better performance than the Circular (i.e. BRISK Circular) and Retinal distributions for most cases. One possible explanation is that the Circular and Retinal distribution are designed to be more robust with respect to rotation and viewpoint changes. However, in this experiment rotation changes are compensated by aligning patches to dominant orientations and the viewpoint changes are relatively small (In Sec. 4.3 we will show that for images with large viewpoint changes, the Retinal distribution outperforms the Uniform distribution). The Circular and Retinal distributions, which lose more detailed information in the outer region, may lead to less distinctive descriptors if details in the outer region are informative and useful.

Second, we examine the use of fixed and varying grid cell size on the descriptor’s performance. In general, using varying sizes can slightly improve the performance of binary descriptors by 0.75% to 6.5%. This makes sense since the outer region is easier to be contaminated by noises, due to translation changes, than the inner region. Using a large smoothing factor can reduce these noises and thus increase the robustness.

Finally, we compare the performance of using only intensity summation I_avg, with that of using all three grid cell features I_avg, d_x, and d_y. The results in the last two columns of Table 2 show that using I_avg + d_x + d_y can improve the performance by 1.4% to 11.4%. This gain is achieved by the introduction of image gradients.

Table 3 shows the ratio of correct matches for different pair selection schemes: random selection, variance-correlation-based method employed in ORB and FREAK, and our modified AdaBoost method. Table 3 reports the results based on the Uniform distribution, fixed grid cell size and all three grid cell features. For other combinations, the trend is consistent. The results show that AdaBoost learning achieves much better performance than the other two selection schemes. This validates our claim that comparing to existing schemes, the modified AdaBoost is more capable of choosing a small subset of critical pairs out of a huge number of candidates and facilitating a systematic exploration in a large design space.

4.2 Evaluation of Scalable Matching

In this section we show that LLDB outperforms its com-
petitors in Nearest-Neighbor (NN) matching over a large database. The better distinctiveness of LLDB accounts for the superior performance. We start with a brief description of Locality Sensitive Hashing (LSH), the indexing structure used for large-scale NN matching.

4.2.1 Locality Sensitive Hashing for LLDB

LSH [25] is a widely used technique for approximate NN search. The key of LSH is a hash function, based on which similar descriptors can be hashed into the same bucket of a hash table while different ones will be stored in different buckets. To find the NN of a query descriptor, we first retrieve its matching bucket and then check all the descriptors within this bucket using a brute-force matching.

For binary features, the hash function is usually a subset of bits from the original bit string: buckets of a hash table contain descriptors with a common sub-bit-string. The size of the subset, i.e. hash key size, determines a maximum Hamming distance among descriptors within the same buckets. To improve the chance that a correct NN can be retrieved by LSH, i.e. detection rate of NN, two techniques - multi-table and multi-probe [26] are usually used. Multi-table stores the database descriptors in several hash tables, each of which leverages a different hash function. In the query phase, each query descriptor is hashed into a bucket of every hash table and checks the matches within them. Multi-table improves the detection rate of NN at the cost of linearly increased memory usage and matching time. Multi-probe examines both the bucket in which a query descriptor falls and the neighboring buckets. While multi-probe would result in more matches to check, it actually allows for less hash tables and thus less memory usage. In addition, it enables larger key size and therefore smaller buckets and fewer matches to check per bucket.

4.2.2 Experiment Setup and Measurement

We use the query time per feature and detection rate of true NN to evaluate the matching performance. The evaluation is based on 228 images from Document-Natural images for the database and 228 synthetically generated query images by applying 30 degrees rotation and motion blur (radius = 3, sigma = 8 and angle = 4) to the original Document-Natural images, implemented by ImageMagick [27]. To obtain the ground truth of true NN for each keypoint from a query image, we infer its corresponding points on its matched database image using the known homography between them.

We compare the matching performance of three versions of LLDB with state-of-the-art binary descriptors LDB, ORB, BRISK and FREAK. We use the OpenCV3.2.1 implementations and the default settings for the ORB and FREAK descriptors and the source code from [11] for the BRISK descriptor. For LLDB, we use three types of grid cell features and grid cell of different sizes (i.e. Figure 3 (d), (e) and (f)) for all sampling distributions. For all descriptors, we use the same length, i.e. 256 bits.

We tune the LSH parameters: the hash key size and the number of probes, to adjust the detection rate and query time. A larger hash key size reduces the number of matches to check and hence reduces the runtime per query, but it may also divide true NNs into different buckets, leading to a lower detection rate. Increasing the number of probes improves the detection rate at a cost of longer runtime, which is linearly proportional to the number of probes. In OpenCV 2.3.1 [14], the number of probes is specified through the parameter multi-probe level. Setting level to 0 indicates only the bucket where a query descriptor falls is checked, level=1 denotes that the neighboring buckets with 1-bit difference is also examined, and so on and so forth. In the experiment, we used five hash tables and for each table we set the key size as 12, 16, and 18 and the multi-probe level as 0, 1 and 2, yielding 9 sets of LSH parameters in total.

4.2.3 Matching Speed vs. Detection Rate of NN

Figure 8 plotted the results of various methods based on the query time per feature and detection rate of true NN. First, we evaluated the performance of LLDB using three different location distributions: LLDB-U, LLDB-R and LLDB-C. LLDB-U stands for LLDB descriptors using the Uniform distribution. Similarly, LLDB-R and LLDB-C are descriptors using the Retinal and Circular distributions respectively. Given the same LSH parameter setting, LLDB-U achieves a higher detection rate and shorter query time than LLDB-R and LLDB-C. For example, for the setting of the multi-probe level being 2 and the key size
being 12, LLDB-U retrieves 31% true NNs, while LLDB-R and LLDB-C detect only 26.4% and 24.5% true NNs, respectively. With respect to the query time, LLDB-U takes 4.2ms, which is around 22% shorter than LLDB-R (5.4ms) and LLDB-C (5.5ms). The faster runtime of LLDB-U is most likely due to its better discriminative ability, which reduces the number of descriptors to check in each hash bucket. To further validate this, we plotted the distributions of the bucket sizes in Figure 9. We observed that LLDB-U has more small-sized buckets than LLDB-R and LLDB-C.

Second, we compare the performance of LLDB-U with the other four descriptors. Given the same LSH settings, LLDB-U is much faster for NN search than ORB, BRISK, FREAK and LDB. For example, for the setting of the probe level being 2 and the key size of 12, LLDB-U only takes 4.2ms per query, while FREAK, BRISK, ORB and LDB takes 6.8ms, 8.7ms, 8.8 and 5.6ms, respectively. That is, LLDB-U achieves a 1.3x ~ 2.1x speedup in NN detection its competitors. Regarding the detection rate, LLDB-U also outperforms other descriptors for every LSH settings.

4.3 Evaluation for Pairwise Image Matching

In this section, we compare the robustness of LLDB with its competitors to general transformations that commonly exist in practical application scenarios.

4.3.1 Dataset

The evaluation was performed using 6 image sequences [16]. The sequences are divided into 4 categories:
- Viewpoint changes: the data sets are Graffiti and Wall;
- Image blur: the data set are Trees and Bikes;
- Compression artifacts: the data set is Jpg;
- Illumination changes: the data set is Light.

Each sequence contains 6 images. For each sequence, we match the first image to the remaining five, yielding five image pairs per sequence, denoted by pair 1/n (2 ≤ n ≤ 6). The five pairs are sorted in order of ascending difficulty. More specifically, Graffiti and Walls are sorted in order of increasing viewpoint changes, and LLDB-U outperforms other descriptors for the Light, Trees, Bikes and JPG sequences.

4.3.2 Experiment Setup and Measurement

For each image, we use oFAST detector to detect 1000 keypoints, each of which is then described using a 32-bit binary string. Similar to Sec. 4.1.2, for each keypoint in the first image we find its NNs in the other five images based on brute-force matching. To obtain the ground truth of correct matches, for each keypoint in the first image, we infer its corresponding point in each of the other five images using the known homography between them. The robustness of descriptors is evaluated based on the ratio of correct matches. Here we define a match is correct if the identified NN points are within a predefined distance range (e.g. 10 pixels in this test) to the inferred points.

4.3.3 Results

Figure 10 shows the ratio of correct matches for 6 image sequences. First, we examine the performance for the Graffiti and Wall sequences, which mainly contain viewpoint changes. Results show that LLDB-R outperforms the other competing descriptors. The results support the following two conclusions: 1) for large viewpoint changes the Retinal distribution offers superior robustness to the other two distributions, 2) LLDB-R has greater robustness comparing to existing binary descriptors. Second, we examine the performance for the remaining image sequences. For these sequences, LLDB-U shows superior performance to other binary descriptors. The results also show that the Uniform distribution offers better tolerance against image blur, illumination changes and compression artifacts than the other two distributions. Therefore, different distributions may have respective advantages in handling different types of distortions. Our framework can automatically select an optimized set of pairs for all candidate distributions.
5 APPLICATION TO MOBILE AUGMENTED REALITY

We apply LLDB to scalable MAR applications by implementing a conventional AR pipeline: we first detect oFAST points and LLDB descriptors for a captured image frame. Then we match it to our database and return the database image with most and sufficient number of matches as a potential recognized result. Finally, we perform RANSAC [33] to validate the result and have a pose estimate. Once the object is recognized, it is tracked from the next frame by matching features of consecutive frames. The recognizer and tracker of AR are executed complementarily during the entire process: the recognizer is activated whenever the tracker fails or new objects occur and the tracker bridges the recognized results and speeds up the process.

In the following subsections, we evaluate the performance of scalable object recognition and tracking individually.

5.1 Object Recognition on Mobile Devices

We first describe the database, the query set, experimental setup and measurement metrics used for our evaluation, and then provide results.

5.1.1 Experiment Setup

We evaluate the performance of mobile object recognition using the 228 Document-Natural images (Figure 12(a)) and 228 testing images (see Figure 12 (b) and (c)). Each testing image is generated by manually captured a picture of a database image with 0.8×−2.0x scaling changes and up to ±45° rotations. In mobile applications, the captured images are very likely to be blurry due to the movement of the capturing device. In order to mimic the motion blur distortions and test the robustness of descriptors to these distortions, we implemented the distortions using ImageMagic [15] with the setting of radius = 3, sigma = 8 and angle = 4, and applied them to each testing image.

We extract 2,000 features on each database image. All the database features are stored in an LSH indexing structure, consisting of 5 hash tables with 2.3M entries in total. For all the hash tables, we set the key size as 1GB RAM and a dual-core ARM Cortex-A9 running at 1GHz clock rate. While there are multi-cores in the processor, we use only one core in our experiments. Figure 11 displays pictures of our object recognition system running on the Motorola Xoom1 tablet. Figure 12 (b) and (c) show some exemplar recognized query images with scaling and rotations, respectively.

5.1.2 Results

Table 4 shows the detection rate when varying the descriptor length from 32bits to 256bits (Note: the precision of all descriptors are about the same, which is above 90%, after RANSAC verification). Two observations can be made from the results. First, for descriptors of short length, i.e. 32bits and 64bits, LLDB-U has a distinct advantage over LLDB-R and other competing descriptors. In particular, the detection rate achieved by LLDB-U of 32bits is 76.2%, which is 26% higher than LLDB-R, and 25.3%, 45.4%, 67.8% and 9.5% higher than FREAK, BRISK, ORB and LDB, respectively. This demonstrates that LLDB-U is more suitable than its competitors for applications which demand small footprint, such as apps running on mobile devices or using large-scale databases. Second, for descriptors of longer length, i.e. 128bits and 256bits, LLDB-U still outperforms other descriptors, but the gap becomes smaller. One explanation for the smaller gap is that as the number of bits increases, the selection task for AdaBoost becomes more difficult, yielding an error rate very close to 0.5. In these cases, the selected features become trivial, having small contributions for improving the distinctiveness. How to address this problem is our future work.

Table 5 shows the query time per image when varying the descriptor length. The results show that for all de-

<table>
<thead>
<tr>
<th>Descriptor</th>
<th>32bits</th>
<th>64bits</th>
<th>128bits</th>
<th>256bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FREAK</td>
<td>21.1</td>
<td>60.8</td>
<td>85.5</td>
<td>92.5</td>
</tr>
<tr>
<td>BRISK</td>
<td>17.6</td>
<td>52.4</td>
<td>82.5</td>
<td>89.4</td>
</tr>
<tr>
<td>ORB</td>
<td>7.5</td>
<td>45.4</td>
<td>72.2</td>
<td>86.3</td>
</tr>
<tr>
<td>LDB</td>
<td>25.1</td>
<td>69.6</td>
<td>90.7</td>
<td>92.7</td>
</tr>
<tr>
<td>LLDB-R</td>
<td>17.6</td>
<td>56.4</td>
<td>78.4</td>
<td>83.7</td>
</tr>
<tr>
<td>LLDB-U</td>
<td>28.6</td>
<td>76.2</td>
<td>89.0</td>
<td>93.8</td>
</tr>
</tbody>
</table>

Table 4: Detection Rate Comparison: matching 228 manually captured images to the Document-Natural images.

<table>
<thead>
<tr>
<th>Binary Descriptor</th>
<th>32bits</th>
<th>64bits</th>
<th>128bits</th>
<th>256bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FREAK</td>
<td>103</td>
<td>130</td>
<td>332</td>
<td>365</td>
</tr>
<tr>
<td>BRISK</td>
<td>98</td>
<td>196</td>
<td>224</td>
<td>277</td>
</tr>
<tr>
<td>ORB</td>
<td>75</td>
<td>149</td>
<td>222</td>
<td>231</td>
</tr>
<tr>
<td>LDB</td>
<td>56</td>
<td>72</td>
<td>100</td>
<td>141</td>
</tr>
<tr>
<td>LLDB-R</td>
<td>44</td>
<td>52</td>
<td>84</td>
<td>93</td>
</tr>
<tr>
<td>LLDB-U</td>
<td>37</td>
<td>40</td>
<td>53</td>
<td>71</td>
</tr>
</tbody>
</table>

Table 5: Query Time (ms) Comparison: matching 228 manually captured images to the Document-Natural images.

<table>
<thead>
<tr>
<th>Descriptor</th>
<th>Time(ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FREAK</td>
<td>61</td>
</tr>
<tr>
<td>BRISK</td>
<td>120</td>
</tr>
<tr>
<td>ORB</td>
<td>63</td>
</tr>
<tr>
<td>LDB</td>
<td>70</td>
</tr>
<tr>
<td>LLDB-U</td>
<td>77</td>
</tr>
</tbody>
</table>

Table 6: Runtime (ms) for computing 256-bit binary descriptors.
descriptors lengths, LLDB-U takes least runtime for recognizing targets from the database. For instance, for 256-bit descriptors the query time of LLDB-U is only 71ms on the tablet, which is 5.1X faster than FREAK, 3.9X faster than BRISK, 3.25X faster than ORB and 2X faster than LDB. The faster runtime of LLDB-U is due to its better discriminative ability, which helps reduce the number of descriptors to check in each hash bucket.

Table 6 shows the runtime of computing 500 256-bit binary descriptors. In general, the computational efficiency of LLDB-U and other descriptors is comparable. FREAK achieves the fastest runtime (i.e. 61ms). In comparison, LLDB-U is slightly slower (i.e. 77ms). But FREAK is less robust and distinctive than LLDB-U, as shown in previous sections. As a result, it usually incurs longer runtime for the entire process than LLDB-U. For example, to recognize 228 objects on the tablet, FREAK costs 426ms for the entire process, while LLDB-U only takes 148ms.

5.2 Real-Time Patch Tracking on Mobile Devices

Tracking on mobile devices involves matching the live frames to a previously captured frame. As consecutive frames usually have large content overlaps, it’s often less challenging for tracking to achieve satisfactory matching accuracy than recognition: the photometric changes (e.g. lighting differences) and geometric changes (e.g. scaling) are smaller and more predictable. Therefore, in the experiment we extracted fewer oFAST points (200) for tracking than for recognition (500). Then we compute the LLDB-U descriptor for each point and search its NN in the previous frame using a brute-force method for descriptor matching. The top-ranked putative matches (e.g. 40 matches with the shortest distances in our experiment) are then validated by homography estimation based on RANSAC.

Figure 13 shows 40 top-ranked putative matches of LLDB-U between consecutive frames. The green lines indicate correct matches that are consistent with homography estimation via RANSAC, i.e. inliers, and the red lines denote the false matches, i.e. outliers. In general, LLDB-U generates more correct matches on natural images than on document images. One possible explanation is that some patches of document images capture the same character from two different words (e.g. two A’s, one is from the word “And” and the other one is from “Apple”), leading to a mismatch. Statistically, LLDB-U generates 68% correct matches out of the top 40 matches. A high inlier ratio makes the RANSAC algorithm converges quick, yielding a short verification and estimation runtime. On a Motorola Xoom tablet, brute-force matching 200 64-bit LLDB-U descriptors of two images takes 13 ms and the subsequent RANSAC estimation for the top40 matches takes 65 ms.

6 Conclusions

In this paper, we introduce a new binary descriptor, named LLDB, which achieves higher discriminative ability, while maintaining similar construction efficiency, than the state-of-the-art binary descriptors. The superior performance of LLDB is achieved by three folds: 1) it utilizes both average intensities and gradients, 2) it adopts a much denser grid cell sampling, and 3) it learns optimized pairs of grid cell features from the labeled examples using a modified AdaBoost procedure. Various sampling strategies for designing binary descriptors can be seamlessly plugged into the learning framework and easily investigated. Comparing to existing approaches, which only explore in a very limited design space due to significant manually efforts and ad hoc schemes, our method facilitates a systematic exploration in a much larger space, providing much richer sources for designing robust and distinctive binary descriptors.

LLDB is demonstrated through a scalable recognition task and a pairwise image matching task. Due to its better distinctiveness, LLDB exhibits both faster runtime and higher accuracy than existing descriptors in recognizing query images from a database with 2.3M descriptors. For pairwise image matching, LLDB also outperforms its competitors.

Though we demonstrated LLDB to MAR applications using a conventional pipeline, LLDB can be directly incorporated into a more advanced flow, e.g. a unified recognition-and-tracking flow, to further reduce the time cost for feature detection and description by exploiting the temporary coherency between consecutive frames. We will explore this direction in the future.

REFERENCES

Up Robust Features. In Proc. of ECCV’06.

[16] ImageSequences, http://www.roberts.ox.ac.uk/~rgerv/research

Figure 13: 40 top-ranked putative matches of LLDB-U descriptors between two consecutive frames. The green lines indicate correct matches, i.e. inliers, and the red lines denote false matches, i.e. outliers. More correct matches are detected on natural images than on document images by LLDB-U.

APPENDIX

We use the following modified objective function L:

$$ L = \sum_{n=1}^{N} e^{-\frac{\beta}{2} \sum_{m=1}^{M} \alpha_m h_m(x_n)} $$

(12)

When selecting the weak classifier h_m at step m, the objective function can be re-written as the following which separates out the contribution of classifier h_m:

$$ L = \sum_{n=1}^{N} e^{-\frac{\beta}{2} \sum_{j=1}^{m-1} \alpha_j h_j(x_n)} e^{-\frac{\beta}{2} \alpha_m h_m(x_n)} $$

(13)

Since the m-1 weak classifiers already selected previously won’t change in the future iterations, we can replace the first m-1 terms with a constant:

$$ W_n^{(m)} = e^{-\frac{\beta}{2} \sum_{j=1}^{m-1} \alpha_j h_j(x_n)} $$

(14)

Accordingly, Equation (13) can be expressed as:

$$ L = \sum_{n=1}^{N} W_n^{(m)} e^{-\frac{\beta}{2} \alpha_m h_m(x_n)} $$

(15)

We can split Equation (15) into two terms: one for data correctly classified by h_m and the other for those misclassified:

$$ L = \sum_{h_m(x_n) = y_n} W_n^{(m)} e^{-\frac{\beta}{2} \alpha_m h_m(x_n)} + \sum_{h_m(x_n) \neq y_n} W_n^{(m)} e^{-\frac{\beta}{2} \alpha_m} $$

(16)

Rearranging these terms, we have

$$ L = (e^{\frac{\beta}{2} \alpha_m} - e^{-\frac{\beta}{2} \alpha_m}) \sum_{n=1}^{N} W_n^{(m)} I(h_m(x_n) \neq y_n) $$

(17)

Optimizing L in Equation (17) with respect to h_m is equivalent to minimizing $\sum_{n} w_n^{(m)} I(h_m(x_n) \neq y_n)$, which is the weighted misclassification error. The optimal value for α_m can be derived by solving $dL/da_m = 0$. That is,

$$ \frac{dL}{d\alpha_m} = \beta \alpha_m e^{-\frac{\beta}{2} \alpha_m} \sum_{n=1}^{N} w_n^{(m)} I(h_m(x_n) \neq y_n) $$

(18)

After dividing both sides by $\beta \alpha_m / 2 \sum_{n} W_n^{(m)}$ and denoting ε_m as the normalized weighted misclassification error,

$$ \varepsilon_m = \frac{\sum_{n} w_n^{(m)} I(h_m(x_n) \neq y_n)}{\sum_{n} w_n^{(m)}} $$

we can finally arrive at:

$$ e^{\frac{\beta}{2} \varepsilon_m} + e^{-\frac{\beta}{2} \varepsilon_m} - e^{-\frac{\beta}{2} \varepsilon_m} = 0 $$

(20)

$$ \alpha_m = \frac{1}{\beta} \ln \frac{1 - \varepsilon_m}{\varepsilon_m} $$

(21)

Xin Yang received her PhD degree in University of California, Santa Barbara in 2013. Currently she is working as a Post-doc in Learning-based Multimedia Lab at UCSB. Her research interests include mobile computer vision and its application to mobile augmented reality, large-scale content-based image retrieval. She is a student member of IEEE and a member of ACM.

Kwang-Ting (Tim) Cheng worked at Bell Laboratories in Murray Hill, N J, from 1988 to 1993 and joined the faculty at UC Santa Barbara in 1993 where he is currently Acting Associate Vice Chancellor for Research and Professor of Electrical and Computer Engineering. He was the Founding Director (1999-2002) of UCSB’s Computer Engineering program and former Chair (2005-2008) of the ECE Department. He also served as Visiting Professor at Univ. of Tokyo Japan, Beijing University China, National TsingHua University, Taiwan, and Hong Kong University of Science and Technology. He has published over 350 technical papers, co-authored five books and holds 12 U.S. Patents. Cheng, a fellow of IEEE, served as Editor-in-Chief for IEEE Design and Test of Computers and currently serves on the editorial boards of several IEEE and ACM journals.